Specification of individual Slouch muscle progenitors in Drosophila requires sequential Wingless signaling.

نویسندگان

  • Virginia T Cox
  • Mary K Baylies
چکیده

The patterning of the Drosophila mesoderm requires Wingless (Wg), one of the founding members of a large family of secreted glycoproteins, the Wnt family. Little is known about how Wg provides patterning information to the mesoderm, which is neither an epithelium nor contains the site of Wg production. By studying specification of muscle founder cells as marked by the lineage-specific transcription factor Slouch, we asked how mesodermal cells interpret the steady flow of Wg. Through the manipulation of place, time and amount of Wg signaling, we have observed that Slouch founder cell cluster II is more sensitive to Wg levels than the other Slouch-positive founder cell clusters. To specify Slouch cluster I, Wg signaling is required to maintain high levels of the myogenic transcriptional regulator Twist. However, to specify cluster II, Wg not only maintains high Twist levels, but also provides a second contribution to activate Slouch expression. This dual requirement for Wg provides a paradigm for understanding how one signaling pathway can act over time to create a diverse array of patterning outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repression by Notch is required before Wingless signalling during muscle progenitor cell development in Drosophila

The larval muscles of Drosophila arise from the fusion of muscle founder cells, which give each individual muscle its identity, with myoblasts (reviewed in [1]). Muscle founder cells arise from the asymmetric division of muscle progenitor cells, each of which develops from a group of cells in the somatic mesoderm that express lethal of scute [2]. All the cells in a cluster can potentially form ...

متن کامل

Drosophila Araucan and Caupolican Integrate Intrinsic and Signalling Inputs for the Acquisition by Muscle Progenitors of the Lateral Transverse Fate

A central issue of myogenesis is the acquisition of identity by individual muscles. In Drosophila, at the time muscle progenitors are singled out, they already express unique combinations of muscle identity genes. This muscle code results from the integration of positional and temporal signalling inputs. Here we identify, by means of loss-of-function and ectopic expression approaches, the Iroqu...

متن کامل

ladybird determines cell fate decisions during diversification of Drosophila somatic muscles.

In the mesoderm of Drosophila embryos, a defined number of cells segregate as progenitors of individual body wall muscles. Progenitors and their progeny founder cells display lineage-specific expression of transcription factors but the mechanisms that regulate their unique identities are poorly understood. Here we show that the homeobox genes ladybird early and ladybird late are expressed in on...

متن کامل

Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm.

Mesodermal progenitors arise in the Drosophila embryo from discrete clusters of lethal of scute (l'sc)-expressing cells. Using both genetic loss-of-function and targeted ectopic expression approaches, we demonstrate here that individual progenitors are specified by the sequential deployment of unique combinations of intercellular signals. Initially, the intersection between the Wingless (Wg) an...

متن کامل

The role of the NK-homeobox gene slouch (S59) in somatic muscle patterning.

In the Drosophila embryo, a distinct class of myoblasts, designated as muscle founders, prefigures the mature pattern of somatic body wall muscles. Each founder cell appears to be instrumental in generating a single larval muscle with a defined identity. The NK homeobox gene S59 was the first of a growing number of proposed 'identity genes' that have been found to be expressed in stereotyped pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 4  شماره 

صفحات  -

تاریخ انتشار 2005